Problema sobre normalidad 1.

Se desea explicar el gasto público en educación (EDUC) en función del Producto Interior Bruto (PIB). Para ello, se plantea el modelo $EDUC_i = \alpha_0 + \alpha_1 PIB_i + u_i$ y se cuenta con los datos (en millones de euros) correspondientes a 20 países:

EDUC	PIB
122,80	10350,0
397,92	12918,9
194,22	12983,2
535,25	13746,3
719,84	14385,5
854,09	15625,7
392,06	16250,3
519,39	16605,6
1213,74	22380,4
1452,46	30351,0
700,35	36665,8
1992,84	39895,8
2500,16	41506,3
1987,76	41969,3
1391,63	44752,5
1739,41	50287,0
1393,21	50918,7
3123,89	51320,1
2810,16	52662,2
2824,96	58417,7

- a) Estime el modelo por MCO y obtenga los residuos.
- b) Sabiendo que el coeficiente de asimetría es de -0,4116 y el de curtosis de 2,6661, contraste si los residuos del modelo están normalmente distribuidos ($\alpha = 0,05$).
- c) Identifique las consecuencias que tiene sobre la estimación de un modelo el incumplimiento de la hipótesis de normalidad.

Solución

a) Estimando por MCO se tiene que:

$$EDUC_i = -214,36+0,049PIB_i$$

Residuos	
-171,42	
-22,53	
-229,39	
74,14	
227,32	
300,63	
-192,09	
-82,22	
328,36	
175,42	
-886,99	
246,79	
674,97	
139,82	
-593,07	
-517,25	
-894,49	
816,46	
436,79	
168,77	
•	

b) Dado que se cuenta con los resultados concernientes a la asimetría y a la curtosis, para llevar a cabo el contraste de normalidad se va a emplear el test de Jarque-Bera, el cual se formula bajo la hipótesis nula de normalidad de los residuos y se construye de la siguiente manera:

$$JB = n \cdot \left\lceil \frac{s^2}{6} + \frac{\left(k - 3\right)^2}{24} \right\rceil \sim \chi_2^2$$

donde n es el tamaño muestral, s el coeficiente de asimetría y k la curtosis o apuntamiento.

En este ejercicio, el estadístico de Jarque-Bera toma el siguiente valor:

$$JB = 20 \cdot \left[\frac{\left(-0.4116 \right)^2}{6} + \frac{\left(2.6661 - 3 \right)^2}{24} \right] = 0.6576$$

Como el valor obtenido para el estadístico es menor que el valor crítico tabulado ($\chi^2_2 = 5,99\,$ para un nivel de significación del 5%), no se puede rechazar la hipótesis nula de normalidad de los residuos, cumpliéndose por tanto este supuesto básico.

- c) En caso de incumplirse la hipótesis de normalidad:
- Los estimadores mínimo-cuadráticos dejan de ser eficientes (de varianza mínima) y, en principio, no pueden realizarse inferencias por desconocerse su distribución exacta.
- Los intervalos de confianza y los contrastes de significación (*t* y *F*) dejan de ser válidos.